68 research outputs found

    Tunable Superparamagnetic Ring (tSPRing) for Droplet Manipulation

    Get PDF
    The manipulation of droplets by magnetic field forms the basis of a fascinating technology that is currently in development. Often, the movement of droplets with magnets involves adding magnetic particles in or around the droplet; alternatively, magneto responsive surfaces may also be used. This work, presents and characterizes experimentally the formation and properties of a tunable superparamagnetic ring (tSPRing), which precisely adjusts itself around a water droplet, due to liquid-liquid interaction, and enables the physical manipulation of droplets. The ring is made of an oil-based ferrofluid, a stable suspension of ferromagnetic particles in an oily phase. It appears spontaneously due to the oil-water interfacial interaction under the influence of a magnetic field. The ferrofluid-water interaction resembles a cupcake assembly, with the surrounding ring only at the base of the droplet. The ring is analogous to a soft matter ring magnet, showing dipole repulsive forces, which stabilizes the droplets on a surface. It enables robust, controllable and programmable manipulation of enclosed water droplets. This work opens the door to new applications in open surface upside or upside-down microfluidics and lays the groundwork for new studies on tunable interfaces between two immiscible liquids.Authors acknowledge funding support from MaMi project, funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 766007, from the Basque Government, under Grupos Consolidados with Grant No. IT1271-19 and from Gobierno de España, Ministerio de Economia y Competitividad, with Grant No. BIO2016-80417-P (AEI/FEDER, UE

    Combinatiorial method for surface-confined sensor desing and fabrication

    Get PDF
    The procedure for the combinatorial fabrication of new sensing materials for cations and anions based on self-assembled monolayers (SAM) is discussed. A library of different sensitive substrates is generated by sequential deposition of fluorophores and small ligand molecules onto an amino-terminated SAM coated glass. The preorganization provided by the surface avoids the need for complex receptor design, allowing for a combinatorial approach to sensing systems based on individually deposited small molecules. Additionally the sensing system has been miniaturized to the microscale using microcontact printing and integrating the sensory SAMs on the walls of microchannels

    Advances in Microtechnology for Improved Cytotoxicity Assessment

    Get PDF
    In vitro cytotoxicity testing is essential in the pharmaceutical and environmental industry to study the effects of potential harmful compounds for human health. Classical assays present several disadvantages: they are commonly based on live-death labelling, are highly time consuming and/or require skilled personnel to be performed. The current trend is to reduce the number of required cells and the time during the analysis, while increasing the screening capability and the accuracy and sensitivity of the assays, aiming single cell resolution. Microfabrication and surface engineering are enabling novel approaches for cytotoxicity assessment, offering high sensitivity and the possibility of automation in order to minimize user intervention. This review aims to overview the different microtechnology approaches available in this field, focusing on the novel developments for high-throughput, dynamic and real time screening of cytotoxic compounds.Funding support from: University of the Basque Country (PIF16/204), the funding support from Gobierno de España, Ministerio de Economía y Competitividad, with Grant No. BIO2016-80417-P (AEI/FEDER, UE) and Gobierno Vasco under grand IT1271-19

    Low‑cost origami fabrication of 3D self‑aligned hybrid microfluidic structures

    Get PDF
    [EN] 3D microfluidic device fabrication methods are normally quite expensive and tedious. In this paper, we present an easy and cheap alternative wherein thin cyclic olefin polymer (COP) sheets and pressure sensitive adhesive(PSA) were used to fabricate hybrid 3D microfluidic structures, by the Origami technique, which enables the fabrication of microfluidic devices without the need of any alignment tool. The COP and PSA layers were both cut simultaneously using a portable, low-cost plotter allowing for rapid prototyping of a large variety of designs in a single production step. The devices were then manually assembled using the Origami technique by simply combining COP and PSA layers and mild pressure. This fast fabrication method was applied, as proof of concept, to the generation of a micromixer with a 3D-stepped serpentine design made of ten layers in less than 8 min. Moreover, the micromixer was characterized as a function of its pressure failure, achieving pressures of up to 1000 mbar. This fabrication method is readily accessible across a large range of potential end users, such as educational agencies (schools,universities), low-income/developing world research and industry or any laboratory without access to clean room facilities, enabling the fabrication of robust, reproducible microfluidic devices.Fernando Benito-Lopez acknowledges the Ramón y Cajal Programme (Ministerio de Economía y Competitividad), Spain. This project has received funding from the European Union´s Seventh Framework Programme (FP7) for Research, Technological Development and Demonstration under Grant agreement no. 604241. LBD personally acknowledges to Elkartek (KK-2015/00088) Grant form the Gobierno Vasco. JS and FBL personally acknowledge Marian Martínez de Pancorbo for let them use her laboratory facilities at UPV/EHU. Authors also acknowledge Adhesive Research for the donation of the PSA samples and to Iñaki Veci for the drawing of the 3D scheme

    Liquid recirculation in microfluidic channels by the interplay of capillary and centrifugal forces

    Get PDF
    We demonstrate a technique to recirculate liquids in a microfluidic device, maintaining a thin fluid layer such that typical diffusion times for analytes to reach the device surface are < 1 min. Fluids can be recirculated at least 1000 times across the same surface region, with no change other than slight evaporation, by alternating the predominance of centrifugal and capillary forces. Mounted on a rotational platform, the device consists of two hydrophilic layers separated by a thin pressure-sensitive adhesive (PSA) layer that defines the microfluidic structure. We demonstrate rapid, effective fluid mixing with this device

    Predicting Dimensions in Microfluidic Paper Based Analytical Devices

    Get PDF
    The main problem for the expansion of the use of microfluidic paper-based analytical devices and, thus, their mass production is their inherent lack of fluid flow control due to its uncontrolled fabrication protocols. To address this issue, the first step is the generation of uniform and reliable microfluidic channels. The most common paper microfluidic fabrication method is wax printing, which consists of two parts, printing and heating, where heating is a critical step for the fabrication of reproducible device dimensions. In order to bring paper-based devices to success, it is essential to optimize the fabrication process in order to always get a reproducible device. Therefore, the optimization of the heating process and the analysis of the parameters that could affect the final dimensions of the device, such as its shape, the width of the wax barrier and the internal area of the device, were performed. Moreover, we present a method to predict reproducible devices with controlled working areas in a simple manner.The authors would like to acknowledge funding support from Gobierno de España, Ministerio de Economía y Competitividad, with Grant No. BIO2016-80417-P (AEI/FEDER, UE), the Gobierno Vasco Dpto. Educación for the consolidation of the research groups (IT1271-19) and from Proyectos Colaborativos from the University of the Basque Country UPV/EHU, BIOPLASMOF (COLAB19/05). This project received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 778001

    Ex situ and in situ Magnetic Phase Synthesised Magneto-Driven Alginate Beads

    Get PDF
    [EN] Biocompatible magnetic hydrogels provide a great source of synthetic materials, which facilitate remote stimuli, enabling safer biological and environmental applications. Prominently, the ex situ and in situ magnetic phase integration is used to fabricate magneto-driven hydrogels, exhibiting varied behaviours in aqueous media. Therefore, it is essential to understand their physicochemical properties to target the best material for each application. In this investigation, three different types of magnetic alginate beads were synthesised. First, by direct, ex situ, calcium chloride gelation of a mixture of Fe3O4 nanoparticles with an alginate solution. Second, by in situ synthesis of Fe3O4 nanoparticles inside of the alginate beads and third, by adding an extra protection alginate layer on the in situ synthesised Fe3O4 nanoparticles alginate beads. The three types of magnetic beads were chemically and magnetically characterised. It was found that they exhibited particular stability to different pH and ionic strength conditions in aqueous solution. These are essential properties to be controlled when used for magneto-driven applications such as targeted drug delivery and water purification. Therefore, this fundamental study will direct the path to the selection of the best magnetic bead synthesis protocol according to the defined magneto-driven application.Authors acknowledge the MaMi project, funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 766007. We acknowledge funding support from “Ministerio de Ciencia y Educación de España” under grant PID2020-120313 GB-I00 / AIE / 10.13039/501100011033, and Gobierno Vasco Dpto. Educación for the consolidation of the research groups (IT1271-19). Special thanks to Prof. J. M. D. Coey for his help during the work performed in his laboratories and to (SGIker) of the University of the Basque Country (UPV/EHU) and Dr. Francisco Bonilla from CIC energiGUNE (Spain) for the technical support

    Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs\ud

    Get PDF
    Fluorescent self assembled monolayers (SAMs) on glass were previouslydeveloped in our group as new sensing materials for metal ions. These fluorescent SAMs arecomprised by fluorophores and small molecules sequentially deposited on a monolayer onglass. The preorganization provided by the surface avoids the need for complex receptordesign, allowing for a combinatorial approach to sensing systems based on small molecules.Now we show the fabrication of an effective microarray for the screening of metal ions andthe properties of the sensing SAMs. A collection of fluorescent sensing SAMs wasgenerated by combinatorial methods and immobilized on the glass surfaces of a custom-made 140 well microtiter-plate. The resulting libraries are easily measured and show variedresponses to a series cations such as Cu2+ , Co2+ , Pb2+ , Ca2+ and Zn2+ . These surfaces are notdesigned to complex selectively a unique analyte but rather they are intended to producefingerprint type responses to a range of analytes by less specific interactions. The unselectiveresponses of the library to the presence of different cations generate a characteristic patternfor each analyte, a “finger print” response.\u

    Magneto Twister: Magneto Deformation of the Water-Air Interface by a Superhydrophobic Magnetic Nanoparticle Layer

    Get PDF
    [EN] Remote manipulation of superhydrophobic surfacesprovides fascinating features in water interface-related applications. Asuperhydrophobic magnetic nanoparticle colloid layer is able to float on the water-air interface and form a stable water-solid-air interface dueto its inherent water repulsion, buoyancy, and lateral capillarity properties. Moreover, it easily bends downward under an externally applied gradient magnetic field. Thanks to that, the layer creates a stabletwister-like structure with aflipped conical shape, under controlled waterlevels, behaving as a soft and elastic material that proportionally deformswith the applied magneticfield and then goes back to its initial state in the absence of an external force. When the tip of the twister structure touches the bottom of the water container, it provides a stable magnetomovable system, which has many applications in the microfluidicfield.We introduce, as a proof-of-principle, three possible implementations of this structure in real scenarios, the cargo and transport of water droplets in aqueous media, the generation of magneto controllableplugs in open surface channels, and the removal of floating microplastics from the air-water interfaceThe authors acknowledge the MaMi project, funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 766007. The authors acknowledge funding support from "Ministerio de Ciencia y Educacion de Espana" under grant PID2020-120313GB-I00/AIE/10.13039/501100011033, Spanish AEI grant no PID2019-104604RB, Gobierno Vasco Dpto. Educacion for the consolidation of the research groups (IT1271-19 and IT1162-19), and European funding (ERDF and ESF). The authors thank for technical and human support provided by Dr. Edilberto Ojeda from GTScience and SGIker of UPV/EHU

    Colorimetric Determination of Glucose in Sweat Using an Alginate-Based Biosystem

    Get PDF
    Glucose is an analyte of great importance, both in the clinical and sports fields. Since blood is the gold standard biofluid used for the analytical determination of glucose, there is high interest in finding alternative non-invasive biofluids, such as sweat, for its determination. In this research, we present an alginate-based bead-like biosystem integrated with an enzymatic assay for the determination of glucose in sweat. The system was calibrated and verified in artificial sweat, and a linear calibration range was obtained for glucose of 10–1000 µM. The colorimetric determination was investigated, and the analysis was carried out both in the black and white and in the Red:Green:Blue color code. A limit of detection and quantification of 3.8 µM and 12.7 µM, respectively, were obtained for glucose determination. The biosystem was also applied with real sweat, using a prototype of a microfluidic device platform as a proof of concept. This research demonstrated the potential of alginate hydrogels as scaffolds for the fabrication of biosystems and their possible integration in microfluidic devices. These results are intended to bring awareness of sweat as a complementary tool for standard analytical diagnosis.This research was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 778001 (DNASurf), “Ministerio de Ciencia y Educación de España” under grant PID2020-120313GB-I00/AIE/10.13039/501100011033, and the Basque Government (Grant IT1633-22)
    corecore